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Abstract—Parasitic infections are one of the leading causes of
deaths and other ailments worldwide. Detecting such infections
using traditional diagnostic procedures requires experienced
medical technologists together with a significant amount of time
and effort. An automated procedure with the ability to accurately
detect parasitic diseases can greatly accelerate the process.
This work proposes a deep learning-based object detection for
parasitic egg detection and classification. We show that multitask
learning via pseudo-mask generation improves the single model
performance. Moreover, we show that a combination of mul-
titask learning, pseudo-label generation, and ensembling model
predictions can accurately detect parasitic egg cells. Continuous
training via pseudo-label generation and ensemble predictions
improves the accuracy of single-model detection. Our final model
achieved a mean precision score (mAP) of 0.956 on a validation
set of 1,650 images. Our best model obtained mIoU and mF1
scores of 0.934 and 0.988 respectively. We discuss its technical
implementation in this paper.

Index Terms—object detection, pseudo labels, multi-task learn-
ing, parasitic egg

I. INTRODUCTION

Despite advances in diagnosis and treatment practices,
parasitic infections remain a global health problem to this
day. Among them, helminths or intestinal parasites are the
most common parasitic infections in the world [1]. Ascaris
lumbricoides, one of the many species of helminths, alone
is estimated to afflict 1.2 billion humans [2]. Therefore,
efficient, robust, and sensitive diagnostic methods are critical
for the management of these infections. Conventional light
microscopy examination of fecal specimens is one the most
commonly used methods for parasitic identification. Due to its
ease of use and low cost, it is especially suitable for developing
countries where the population’s vulnerability to such diseases
is significantly higher. However, traditionally, determining the
presence or absence of parasitic eggs in a fecal smear is en-
tirely based on the expertise of the medical personnel. A high
volume of infections and a subsequent increase in workload
deteriorate the efficacy of manual detection. Therefore, an
automated pipeline that can accurately localize and classify
parasitic eggs from microscopic images is highly desirable.

Numerous classical machine learning and image processing
techniques have been proposed to detect parasitic infections
in various imaging modalities. Previous methods commonly
employ multi-stage detection processes where preprocessing
and handcrafted feature extraction are accomplished, followed
by classical pattern recognition techniques. In [3], digital
image filtering combined with morphometric features is used
to train a neural network to identify helminth eggs in micro-
scopic images. Also, a fuzzy expert system based on image
moments was proposed by [4] to detect human parasites. Sim-
ilarly, [5] uses a support vector machine to classify parasites
in microscopic images using hand-engineered features. [6]
proposed to perform image segmentation of the parasites
followed by construction of an object descriptor. Standard
pattern classifiers were then used for classification. However,
microscopic images of real-world specimens are taken under
nonideal conditions, including varying amounts of background
debris, imaging artifacts, defocus, and motion blur that limits
the performance of handcrafted features.

With the advent of more powerful computing devices and
the availability of large datasets, deep learning techniques have
begun to thrive recently. They have shown more robustness
in deploying under real-world conditions. For example, [7]
proposed a convolutional neural network (CNN) with a U-Net
structure to segment and classify parasites from microscopic
images. A hybrid recurrent and CNN architecture was utilized
for classifying parasitic infections [8]. Multiple researches
have also treated the diagnosis of parasitic infections as an
object detection problem. For example, the FasterRCNN [9]
model was trained end-to-end to detect worm eggs in micro-
scopic images. [10] also demonstrated that object detection
architecture such as YOLOv5 could be successfully trained to
detect parasites in fecal smears. Similarly, [11] proposed Fe-
calNet which used a RetinaNet [12] like architecture to detect
fecal components in addition to parasitic eggs. Lastly, [13]
proposed the Helminth Egg Analysis Platform (HEAP) which
combined a variety of common object detection models in
a web-based tool for the diagnosis of helminth infections.
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While the usefulness of deep learning-based parasite detection
methods has been demonstrated as seen above, the absence of
standardized benchmark datasets for this task makes it difficult
to compare the efficacy of different algorithms. Therefore,
combining benchmark datasets and deep learning techniques
can greatly accelerate the research on detection and classifi-
cation of parasitic cells.

In this paper, we apply object detection techniques to detect
and classify parasitic egg cells in the International Conference
on Image Processing (ICIP) challenge dataset [14]. We use
multiple state-of-the-art CNN models such as high-resolution
network (HRNet) [15], ResNet-101 [16], ResNeXt-101 [17]
as backbone networks. We apply multi-task learning by train-
ing instance segmentation models with pseudo-ground truth
masks. These masks are generated once by a class-agnostic
instance segmentation model as additional supervisory signals
to improve performance. Next, we ensemble predictions from
multiple single and multi-task learning architectures to detect
parasitic egg cells and to generate pseudolabels for the testing
set. Different bounding box predictions are combined with
a weighted box fusion algorithm [18]. We then used these
pseudo-labels from the testing set and continued training the
models for multiple rounds. We found that combining the
proposed techniques outperforms a single model prediction.
Our final model achieved a mean intersection over union
(mIoU) score of 0.934 and a mean F1-Score of 0.988 on the
submission leaderboard. We describe its technical implemen-
tation in this paper.

II. MATERIALS AND METHODS

We treat the parasitic egg cell detection as an object
detection task. Most deep learning-based object detection tasks
can be considered as assigning correct category labels to a
set of given bounding boxes. The problem can generally be
divided into two different approaches: one-stage detection,
which learns to detect and classify parasitic egg cells at
the same time using prior bounding boxes, and two-stage
detection, which first learns to delineate between objects and
background using the region of interest (ROI) proposals, and
then classify parasitic egg cells. We use anchor-free detectors
that predict offsets without anchors, such as Task-aligned One-
stage Object Detection (TOOD) [19], and Generalized Focal
Loss (GFL) [20] and two-stage detection models including
CascadeRCNN [21], and Hybrid Task Cascade (HTC) [22].
We trained and tested the models on the given dataset. Next,
we combined their predictions with ensemble techniques. The
resulting pseudolabels were then used for continuous training
(or fine-tuning). We describe the dataset and our training
procedure (Figure 1) in the section below.

A. Datasets

We use parasitic egg detection and classification in the
microscopic images dataset from ICIP 2022 challenge [14].
The dataset contains 11,000 images with 11,031 groundtruth
bounding boxes. We reserve 15% of images for validation.
The square root of annotation areas is distributed around 212.4

±98.72 pixels. 5.69% of annotations have a square root of an
area larger than 400. 742 and 10,286 annotations are classified
as medium and large annotations respectively according to the
COCO classification standard [23].

B. Training Procedure

1) Pseudo-mask generation for multitask learning via class-
agnostic instance segmentation: In our experiment, we em-
ployed a class-agnostic instance segmentation model whose
mask prediction branch is trained exclusively with ground truth
boxes instead of combining them with proposals generated
by a region proposal network. This significantly improves
the generalization ability of the mask-head which allows the
model to predict segmentation masks for novel classes when
bounding boxes are provided [24]. We exploit this ability to
generate pseudo-ground truth masks for the training and test
datasets using the ground truth boxes and the models’ predic-
tions respectively. We found that adding pseudo-ground truth
masks and retraining the proposed deep learning architectures
perform better on the validation and test sets.

2) High-resolution backbone: Being able to provide seman-
tically rich high-resolution representations to detection and
instance segmentation heads allows for a more precise spatial
localization ability. We found experimentally that maintain-
ing high-resolution feature maps is even more crucial than
using multi-scale training or higher resolution input images.
Therefore, we opted to use HRNet [15], which generates high-
resolution features through repeated multi-resolution fusion as
the backbone network. Unlike other models that simply up-
scale low-resolution representations to create high-resolution
counterparts, both are complementary to each other in HRNet.

3) Multi-task learning: Multi-task learning has been shown
to improve the performance of deep neural networks especially
when training objectives are closely related [25] [26], [27].
For example, object detection and instance segmentation tasks
can be learned together in models such as MaskRCNN [26],
DETR [28], or Hybrid Task Cascade [22]. Multi-task learning
with cascading and interleaving detection and mask prediction
improves performances in both tasks for the given dataset.
However, annotating ground-truth masks is a much more time-
consuming endeavor than the bounding box. Therefore, the
availability of datasets with annotated masks is much more
limited compared to that of the bounding box dataset.

Multitask cascaded architectures such as CascadeR-
CNN [21] and CascadeMaskRCNN [21] are generally more
accurate than their single-head counterparts due to the repeated
refinement of predictions. Yet, one of the caveats of multi-
tasks cascades using CascadeMaskRCNN is the lack of direct
communication between mask and bounding box heads. This
prevents complementary information flow from each task-
specific head and the supervisory signals to be fully utilized by
the model. Hybrid Task Cascade (HTC) [22] can mitigate this
by adding (i) interleaved bounding box and mask prediction
and (ii) a series of connections between mask heads and (iii)
spatial context through an auxiliary segmentation branch. Our
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proposed method follows the HTC architecture without the
semantic segmentation branch as shown in Figure 2.

4) Ensemble predictions: We collect the best perform-
ing models and apply ensemble bounding boxes using the
weighted box fusion (WBF). WBF combines the confidence
scores of proposed bounding boxes using an iterative algorithm
to construct average bounding boxes. We use a combination
of non-maximum suppression and classification scores thresh-
olding to prune out low-quality predictions. Then, we remove
the overlapping boxes by taking the highest confidence box.

5) Pseudo-label generation : Semi-supervised object detec-
tion [29] [30], [31] relies on supervisory signals from pseudo
labels containing bounding boxes and their corresponding
classes. These labels are generated by inferencing unlabeled
images with a trained teacher model. We adopt a similar
semi-supervised detection pipeline as shown in Figure 1. In
addition to pseudo-bounding boxes from the unlabeled testing
set, we also generate pseudo masks using the same approach
as described above.

C. Training strategy

We train our models with a batch size of 8 and stochastic
gradient descent with an initial learning rate of 0.02. The
momentum is set to 0.9 and weight decay is set to 10−5. The
best performing model in our experiment uses HRNetV2p-
W32 as a backbone which has a base channel width (W)
of 32 and a feature pyramid (p) style representation for the
downstream tasks. The weights are initialized from the model
which is pretrained on the COCO dataset. The training is set
to 10 epochs with a linear learning rate reduction schedule
with a drop rate of 0.1 at the 7th, 8th, and 9th epochs.

We use both geometric and pixel augmentations during
training such as affine transformations, random flips, random
contrast and brightness, and different types of blur including
motion blur. The images are resized so that the shortest side is
at most 800 pixels and the longest side at most 1333. Models
are trained on 2 to 4 A100 GPUs with 8 images per GPU
using mixed-precision mode.

Fine-tuning with pseudo labels on the unlabeled data is
accomplished using the same model described above but with
the addition of a validation subset. The fine-tuning schedule
is set to 5 epochs with learning rate reductions at the 3rd and
4th epochs with a factor of 10.

III. RESULTS

In this section, we describe our results from the competition.
First, we show that multitask learning with pseudomask gen-
eration outperforms single task prediction. Then, we evaluate
whether ensemble predictions with pseudo-label generation
improve upon a single model prediction. Continuous training
with this procedure gives the highest mIoU and mF1 scores
on the leaderboard.

A. Multitask learning outperforms a single-task model

First, we tested if multitask learning with additional pseudo-
masks helps improve the task by comparing mAP scores dur-

ing training (Figure 3). We found that adding an instance seg-
mentation branch as an auxiliary task (CascadeMaskRCNN)
increases the model performance with the same backbone
(CascadeRCNN) during training. CascadeMaskRCNN outper-
forms the detection-only CascadeRCNN model by improving
mAP from 0.929 to 0.932. The gains in mIoU are more
significant than mAP (Table I), which may indicate that adding
a mask prediction branch allows precise localization of egg
cells. Furthermore, by adding the interleaved connections and
direct pathways between mask heads and bounding box heads
in the Hybrid Task Cascade (HTC) model, we can further
increase the scores on both the validation set (Figure 3) and
the leaderboard (Table I). Thus, from our experiment, adding
both an auxiliary task and pseudo-labels helped improve both
mAP and mIoU scores.

B. Ensemble prediction and pseudo-label generation improve
single-model prediction

The trained models’ predictions on the test set were fused
with WBF with equal weights by default. We set the NMS
threshold to 0.55 which favors more confident predictions.
Subsequently, we used the best ensemble results as pseudo-
labels on the testing set. After obtaining pseudo-labels, we
retrain these detection models and perform ensemble predic-
tion again. We do this for 3 iterations for our final model.
The final ensemble was a fusion of 5 models: TOOD with
Resnet101, GFL with Resnet101, CascadeRCNN with HRNet,
HTC with HRNet, and HTC with ResNeXt-101. We achieved
mIoU and mF1 scores of 0.9339 and 0.9881 on the submission
leaderboard, respectively (Table 1).

IV. ERROR ANALYSIS

We explore the output predictions of the best-performing
model on the test scoreboard. The model tends to under or
over-predict depending on image conditions. Especially in the
presence of background debris with similar textural composi-
tions to the eggs, the model is prone to predict false positive
cells as shown in Figure 4B. Using a confidence threshold of
0.5, we can predict around 2,318 cells on test images but it
does not cover all images. With a confidence threshold of 0.1,
we found that the model outputs 2,936 bounding boxes which
cover predictions on all 2,200 test images. It over-predicts
to 1.334 cells per image where we found on average around
1.002 cells per image on the training dataset. We think further
improvements to the model can reduce the false positives cells
and improve the test score. Additionally, we noticed that there
is a lower distribution of images with small or medium-size
cells in the provided dataset. Therefore, improving detection
on medium and small cells can also improve the accuracy on
the final test dataset.

V. CONCLUSION

This paper proposed deep learning-based object detection
techniques for detecting parasitic egg cells detection using
an ICIP Challenge 2022 dataset. By combining multitask
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Fig. 1. Diagram of the training procedure. First, we used the training data to generate pseudomask labels. Both pseudomasks and bounding boxes are used
to train the multitask localization models. We apply the same models to predict pseudolabels and bounding boxes, on the test set and continue training the
model. Finally, we validated both mAP and mIoU as our final results.

TABLE I
FINAL MODEL PERFORMANCES AND COMPUTATIONAL COMPLEXITIES

Model mAP AP 50 AP 75 AP M AP L mIoU GFLOPs # Parameters
(Millions)

ResNet-101-GFL 0.941 0.998 0.992 0.891 0.941 0.923 215.69 52.33
ResNet-101-TOOD 0.948 0.998 0.993 0.897 0.948 0.926 179.85 53.24
HRNetV2p-W32-CascadeRCNN 0.948 0.999 0.993 0.9 0.948 0.927 312.83 74.71
HRNetV2p-W32-HTC (Multitask) 0.940 1.0 0.998 0.896 0.939 0.928 470.47 82.72
ResNeXt-101-HTC (Multitask) 0.941 1.0 0.999 0.898 0.941 0.928 629.3 139.83
Ensembled Model 0.956 0.998 0.993 0.916 0.957 0.934 - -

*Our results show that a single multitask HRNetV2p-W32 model trained with pseudomasks gives the highest mIoU score with less model complexity.
Combining ensembling boxes using weighted boxes fusion (WBF) and pseudo-label generation gives the highest performance on the leaderboard.
*AP scores are calculated on the validation set, AP50 means average precision when IoU is greater than 50%, APM means average precision when the size

of annotation is medium.
*mIoU scores are from the official scoreboard.
*Multitask means the model is trained with additional pseudomasks.

Fig. 2. Single model architecture. HRNetV2p-W32 is one of the best-
performing single models. The model consists of HRNet backbone with a
feature pyramid network (FPN) followed by ROI pooling. We use Hybrid
Task Cascade (HTC) as the model head for instance segmentation where it
predicts both bounding boxes and masks.

Fig. 3. Validation mAP (without pseudolabels) scores over training epochs
between models . Multitask learning (CascadeMaskRCNN) outperforms the
detection-only (CascadeRCNN) model. Hybrid Task Cascade (HTC) which
adds interleaved connections and direct pathways between mask and bounding
box heads improves the mAP to 0.935 after 10 epochs.

learning, ensemble prediction, pseudo-label generation, high-
resolution representation learning, and cascaded multi-task
learning architecture, we show that it can accurately detect
parasitic egg cells. Our model gets mIoU and mF1 scores of
0.9339 and 0.9881 respectively.
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