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Abstract—The increasing prevalence of antimicrobial resis-
tance (AMR), as microorganisms develop resistance to antimi-
crobial drugs, has emerged as a critical concern in infection
treatment, resulting in a rising death toll. Assessing the effect of
drugs can provide insights by studying the morphological change
of bacteria after drug treatment. However, utilizing conventional
techniques such as CellProfiler for long-term and large-scale
sample experiments is impractical due to the manual processes
involved. To address this challenge, we proposed a deep learning-
based object detection model for predicting the type of antibiotic
treatment and automatically extracting bacteria morphology. Our
model combines YOLOX and two Cascade R-CNNs using weight
box fusion to enhance performance. It achieves an mIOU of 0.753
and mAP of 0.699 higher mAP compared to CellProfiler (mAP =
0.218). In addition, we use a computer vision approach to extract
bacteria morphological features including cell membrane, DNA,
and color intensity to classify the treated antibiotic which achieves
comparable performance to CellProfiler (F1-Score = 0.75, 0.79 re-
spectively). We believe our work can be used as an automatic tool
to enhance the efficiency of antibiotic prediction and extracting
cell profiles for AMR applications. Our code and web application
are available at https://github.com/biodatlab/bacteria-detection.

Index Terms—Deep learning, Object detection, Ensemble
Method, Weighted-Box Fusion, Antibiotics, Antimicrobial Resis-
tance

I. INTRODUCTION

Antimicrobial resistance (AMR) is a critical issue where
bacteria develop resistance to antibiotics, resulting in ineffec-
tive treatments. With 1.2 million deaths attributed to AMR in
2019 [1], projections indicate that this number could rise to a
staggering 10 million within the next 30 years [2]. Previous
AMR studies include the development of new drugs or Macro-
molecular synthesis (MMS) assays to determine bacterial

inhibition pathways [3]. However, such approaches require
time and experimentation. Recent research has shown that
imaging and using morphological features of bacteria, such as
Escherichia coli (E. coli), can indicate the specific inhibition
pathways of antibiotics which can scale the understanding of
AMR [4].

One approach to determining the bacteria morphology is
utilizing CellProfiler, an open-source software for extracting
and clustering cell features. CellProfiler uses machine learning
(ML) for quantitative analysis of images by extracting the
features of bacteria that can be used to predict potential inhibit
pathways or treated antibiotics [5]. Nevertheless, CellProfiler
still requires manual work to adjust the original microscopic
images. Deep learning (DL) based methods can solve this
problem especially when there is a large number of data, for
example, Faster R-CNN [6], YOLOv2 [7], and YOLOv3 [8]
have been used for automating the detection of cells such as
cancer cell counting [9], detection of Campylobacter bacteria
and phagocytic activity of leukocytes [10], and blood cell
detection [11]. DeepBacs also demonstrated using YOLOv2
with various types of bright-field and fluorescence images to
detect growth stages of E.coli cells and antibiotics phenotyping
[12]. However, YOLOv2 still has limited performance in
biomedical images due to its grid-based architecture which
performed poorly on densely packed cell colonies [7].

Modern object detection models such as Cascade R-CNN
[13], HRNet [14], and YOLOX [15] have shown remarkable
performance in various detection tasks. They have been par-
ticularly successful in tasks such as white blood cell detection
[16], parasitic egg cell detection [17], and cervical cell detec-
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tion [18]. Given their capabilities, it is reasonable to explore
the potential of these approaches in detecting bacteria after
antibiotic treatment and analyzing their morphology.

In this work, we proposed a deep learning-based object
detection and automatic feature extraction from bacterial mi-
croscopic images that outperformed the traditional technique,
CellProfiler, in both speed and accuracy. We collected 900
images of untreated E. coli after being treated with seven
well-known antibiotics, including Ampicillin, Ciprofloxacin,
Rifampicin, Tetracyclines, Mecillinam, and Kanamycin. We
trained the object detection models including Cascade R-
CNN and YOLOX and combined the predictions using the
ensemble method. Our approach achieves higher mAP than
using the CellProfiler. In addition, we used a computer vision
approach to extract essential morphological features such as
cell membrane characteristics, DNA distribution, and color
intensity. The feature extraction achieved comparable perfor-
mance in downstream antibiotic classification tasks compared
to CellProfiler. Our technique could be used for automatically
identifying antibiotics and extracting morphological features
for further analysis of AMR.

II. MATERIAL AND METHODS

A. Datasets

The dataset was collected using a DeltaVision Ultra fluo-
rescence microscope (100x magnification) at Mahidol Univer-
sity’s Institute of Molecular Biosciences. It features E. coli
bacteria treated with seven common antibiotics and untreated
bacteria, totaling 900 images including 100 images per an-
tibiotic class and 200 untreated. Custom modifications were
applied using ImageJ to enhance bacterial boundaries. This
allowed for easier annotation with Labelme [19], focusing
solely on drawing bounding boxes. The labels excluded dead
bacteria, usually appearing bright or green. On average, each
image contains 61 bacteria, with treated images having around
50 per image and untreated having more than 100. The dataset
was split into training (720 images), validation, and testing
datasets (90 images each).

B. Model development

We employed various object detection approaches to locate
bacteria and predict the corresponding administered antibi-
otics. The aim was to compare object detection performance
with the CellProfiler-based methods.

CellProfiler-based methods: CellProfiler has been widely
used as a tool for cell morphology analysis. The general
workflow involves modifying raw images into a suitable for-
mat using ImageJ. Subsequently, Ilastik, a bioimage analysis
software, is used to detect bacteria in the modified images.
The extracted features are then processed using CellProfiler.
Hierarchical density-based spatial clustering of applications
(HDBSCAN) removes outliers and noise from the obtained
features. Finally, the cleaned features are used for antibiotic
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classification using ML approach such as support vector
machine (SVM). The cellProfiler-based method is sensitive
to low-resolution bacteria images and requires expertise to
configure the hyperparameters, making it less suitable to scale
the experiments. [20]

Proposed models: We proposed two models to address
the limitations of baseline models: Cascade R-CNN [13]
with a Res2Net [21] backbone and YOLOX [15]. Cascade
R-CNN enhances Faster R-CNN by cascading its detection
head and increasing the Intersection over the Union (IoU)
threshold, improving detection accuracy. It incorporates the
Res2Net backbone for better spatial features and more accurate
bounding box predictions compared to ResNet [22], YOLOX
enhances YOLOv3 by decoupling the classification and bound-
ing box regression tasks and using an anchor-free algorithm
for faster bounding box prediction, resulting in superior object
detection performance., both models are enhanced with ad-
ditional components such as deformable convolutional layers
version 2 (DCNv2) [23], Dynamic Head (Dyhead) [24], Path
Aggregation Network (PANet) [25], and Side-Aware Boundary
Localization [26]. These modifications further improve the
models’ performance in bacteria morphology classification.

Ensemble Method: The ensemble model combines the re-
sults from Cascade R-CNN Res2Net-50, Cascade R-CNN
Res2Net-101, and YOLOX. To merge overlapping bounding
boxes, we utilized the Weighted Box Fusion (WBF) technique,
which employs weighted averaging of bounding boxes. This
method provides smoother bounding box predictions compared
to traditional non-maximum suppression (NMS). For merging
the bounding boxes, we use an IoU threshold of 0.8.

Baseline models: We compared the proposed models with
baseline object detection approaches including Faster R-CNN,
YOLOv2, and YOLOv3. We chose YOLOv2 [7] and Faster
R-CNN [6] since it is frequently used as a baseline in cell
object detection tasks and also achieve good performance in
detecting bacteria in the fluorescent microscopic image.

Baseline YOLOv2 was developed using the Darknet library
[27]. The rest of our models were developed using MMDetec-
tion [28]. We applied augmentation including padding, random
flipping, shifting brightness-contrast, median blurring, shifting,
scaling, and rotating during training. Cascade R-CNN and
Faster R-CNN models are training for 200 epochs and YOLOX
and YOLOv3 are training for 800 epochs. We selected the
model with the best validation score for ensemble prediction.
All experiments used GPU NVIDIA 3060Ti.

C. Model evaluation

The object detection models were evaluated using two
main metrics: mean intersection over union (mIoU) and mean
average precision (mAP). mIoU can be calculated by the mean
of the area of overlap over the area of union for each class (c)
as

mIoU =
1

n

∑
c

IoUc (1)



Fig. 1. A schematic of the bacterial cell detection and morphological feature extraction. A. The object detection models detect bacteria and classify the
treated antibiotics. The bounding boxes are fused together using weight box fusion. B. Image color is enhanced using Feature Pyramid Network (FPN) [29].
C. DeepMAC utilizes bounding boxes to generate masks. D. Finally, the computer vision approach is used to extract bacteria morphological features such as
cell membrane perimeter, cell membrane area, DNA perimeter, DNA area, and color statistics.

where IoU per class can be calculated as

IoUc =
Intersection Areac

Union areac
(2)

In addition, we used mean average precision (mAP) which
is the mean of all average precision (AP) for all predicted
classes (c). We used mAP as our main metric since we wanted
the model to identify bacteria and their treated antibiotics
correctly.

D. Bacteria Feature Extraction

In addition to predicting treated antibiotics, it is crucial to
consider the morphological features of bacteria caused by an-
tibiotics. These features play a vital role in predicting how new
antibiotics will target bacterial pathways. The feature extrac-
tion model extracts specific features from predicted bounding
boxes, including the perimeter, area, length, and width of the
bacteria’s cell membrane, DNA, and color intensity (minimum,
maximum, mean, median, and standard deviation of the green
and blue color channels) [30]. These features can be used to
predict the pathways they target, facilitating the development
of new antibiotics.

We employed a three-step process for bacteria feature
extraction. First, we used an image from the Feature Pyra-
mid Network (FPN) to manipulate pixel color for the cell
membrane and DNA [29] (Figure 1B). Next, we performed
instance segmentation from a given bounding box to get
a cell mask using DeepMAC [31]. Finally, we extracted
19 morphological features from these masks using OpenCV
[32] to obtain cell parameters such as area, perimeter, and
dimensions of the segmented regions (Figure 1C).

To evaluate the feature extraction model, we used features
from the test images extracted from the proposed model and
CellProfiler. Subsequently, we divided each cell’s features into

train and test datasets with an 80:20 ratio and used SVM for
antibiotic classification. Finally precision, recall, and F1-score
as the evaluation metrics for comparing the quality of the
features from both procedures. This approach aids in assessing
the feature quality, which is vital for studying the bacteria
morphology.

III. RESULTS

A. Compare the detection performance between models and
CellProfiler

The baseline model such as YOLOv2 and Faster R-CNN
gives a mIoU of 0.14 and 0.325 and mAP of 0.053 and 0.041
respectively. The baseline model can localize the bacteria but
cannot classify them correctly thus getting a low mAP score.
The best three-performing models include Cascade R-CNN
Res2Net-101, Cascade R-CNN Res2Net-50, and YOLOX.
For the single detection model, Cascade R-CNN Res2Net-50
achieves the highest mAP and mIOU of 0.680 and 0.802 re-
spectively (Table I). The ensemble method, which is the means
to combine predictions from many different models, was
introduced to improve the model performance. The ensemble
model was achieved from the combination of the models,
which are Cascade R-CNN with Res2Net-101, YOLOX m,
and Cascade R-CNN with Res2Net-50. It results in mAP and
mIoU at 0.699 and 0.753 respectively which is higher than
CellProfiler with mAP and mIoU at 0.218. The ensemble
model can significantly detect more bacteria compared to
CellProfiler.

B. Downstream antibiotic classification using bacteria mor-
phological features

We compared automatic feature extraction using the best
object detection model to CellProfiler for classifying antibiotic
treatments based on cell morphology (Table II). Our model



TABLE I
RESULTS OF EACH MODEL’S PERFORMANCE

Model mAP AP50 AP75 APM APL mIoU
CellProfiler* 0.218 0.367 0.225 0.211 0.298 0.218
YOLOv2* 0.053 0.192 0.015 0.048 0.102 0.140

Faster R-CNN* 0.041 0.097 0.031 0.005 0.045 0.325
Cascade R-CNN 0.652 0.808 0.762 0.677 0.692 0.800

Res2Net-101
Cascade R-CNN 0.680 0.82 0.779 0.704 0.628 0.802

Res2Net-50
YOLOX m 0.621 0.902 0.835 0.711 0.796 0.755

Weighted box 0.699 0.836 0.796 0.717 0.675 0.753
fusion

*Baseline Note — mAP = means average precision; AP50, AP75 = average
precision at certain IoU value; APM , APL = average precision across the
size of the object; mIOU = means Intersection over Union. Both metrics are
used to measure the localization and classification performance of the model.

achieved a similar performance to CellProfiler, with F1-scores
of 0.76 and 0.79, respectively. While CellProfiler excelled in
precision for certain classes like Ciprofloxacin and Colistin,
its recall was lower compared to our model. This suggests
CellProfiler’s strength lies in feature extraction, but it detects
fewer bacteria initially than our model. In summary, our auto-
mated model is effective for morphological feature extraction
in this context.

TABLE II
PRECISION, RECALL, AND F1-SCORE OF THE DOWNSTREAM
ANTIBIOTIC CLASSIFICATION USING CELL FEATURES FROM

CELLPROFILER AND PROPOSED MODEL

CellProfiler Proposed
Class Precis. Recall F1-score Precis. Recall F1-score
Amp 0.68 0.83 0.75 0.82 0.75 0.79
Cip 1.00 0.39 0.56 0.82 0.66 0.73
Col 0.80 0.49 0.61 0.83 0.66 0.78
Kan 0.86 0.89 0.87 0.78 0.80 0.79
Mec 0.87 0.87 0.87 0.81 0.45 0.58
Rif 0.97 0.90 0.93 0.86 0.84 0.85
Tet 0.85 0.85 0.85 0.76 0.84 0.80
Unt 0.86 0.96 0.91 0.74 0.82 0.78
Avg 0.86 0.77 0.79 0.80 0.73 0.76

Abbreviations: Precis, Precision; Amp, Ampicillin; Cip, Ciprofloxacin; Col,
Colistin; Kan, Kanamycin; Mec, Mecillinam; Rif, Rifampicin; Tet, Tetracy-
cline; Unt, Untreated.

IV. ERROR ANALYSIS
We observed the false positive predictions in some areas

where cells overlap or sit closely in a colony. When the colony
is densely packed, the prediction generated by the models may
fail to cover all individual bacteria or include an excessively
incorrect prediction overall (Figures 2A and 2B). The model
also predicted wrongly in the cell-division area where it is hard
to distinguish between a single cell or a dividing cell (Figure
2C). The models also overpredicted when the cell membranes
of the bacteria were thin and not connected smoothly. (Figure
2D)

V. DISCUSSION
Our work introduces an automated deep learning-based

object detection model for studying antimicrobial resistance

Fig. 2. An example of the model’s prediction from different classes that
contain errors. A, B. Bacteria treated with Ampicillin and Ciprofloxacin had
a dense group of colonies and the model failed to detect some of the bacteria.
C. Untreated bacteria had an exceeding number of bounding boxes due to the
incomplete cell division D. Bacteria treated by Tetracycline tended to have
unclear cell membranes making it hard for the model to detect.

(AMR) in E. Coli post-drug treatment. The top-performing
model combines YOLOX and two Cascade R-CNNs using
a weight box fusion ensemble method, outperforming Cell-
Profiler in terms of mAP and mIoU. These features are then
utilized for antibiotic classification, achieving performance
comparable to CellProfiler. Additionally, we developed a web
application for our model.

Both baseline models exhibit lower mAP in the object
detection task due to their simplistic architecture, which ham-
pers the extraction of high-quality spatial features. The low-
resolution features hinder the accurate identification of bacte-
ria. Additionally, the models struggle with misclassifying the
detected bacteria and have difficulties in precisely localizing
the bounding boxes around bacteria colony [33]. Moreover,
distinguishing bacteria with a small size poses a challenge for
the models that fail to extract the feature at the difference scale
such as YOLOv2, leading to inaccurate classification [8].

The single model, Cascade R-CNN based, still lacks the
ability to differentiate a colony of densely packed bacteria
resulting in false detections. YOLOX tends to overpredict
bounding boxes. Another observation is that the ensemble
model has a lower overall mIoU score but a higher mAP. This
is because the ensemble method fuses the overlapped area from
all of the models, resulting in higher AP but the combined
boxes get lower mIoU. We can improve the individual model
and ensemble parameters to improve the final predictions.

As this model was trained based on E.coli which has its
unique morphology, Model training should be required for a
different type of bacteria.

Finally, CellProfiler and our proposed object detection-
based model were compared. While CellProfiler is good at
detecting certain cell characteristics, its detection rate is only
20-30%. In contrast, our approach focuses on detected cells
for feature comparison and achieves competitive results. We



encountered occasional inaccuracies in automatic feature ex-
traction using OpenCV based on DeepMac masks, but overall,
DeepMac masks performed well, especially in sparse cell
areas. However, in densely packed bacteria areas, the mask
quality was lower. Future work can improve robustness in such
scenarios. Training an instance segmentation model to predict
both bounding boxes and masks shows promise for enhancing
object detection and mask segmentation [34]. These findings
open doors for advanced biomedical image analysis with broad
potential applications.
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Guillaume Jacquemet, Séamus Holden, Mike Heilemann, et al. Deepbacs
for multi-task bacterial image analysis using open-source deep learning
approaches. Communications Biology, 5(1):688, 2022.

[13] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high
quality object detection. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

[14] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng,
Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang,
et al. Deep high-resolution representation learning for visual recog-
nition. IEEE transactions on pattern analysis and machine intelligence,
43(10):3349–3364, 2020.

[15] Yao Zhang, Ke Jiong Shen, Zhen Fang He, and Zhi Song Pan. Yolo-
infrared: Enhancing yolox for infrared scene. Journal of Physics:
Conference Series, 2405(1):012015, 2022.

[16] Zhenggong Han, Haisong Huang, Dan Lu, Qingsong Fan, Chi Ma,
Xingran Chen, Qiang Gu, and Qipeng Chen. One-stage and lightweight
cnn detection approach with attention: Application to wbc detection of
microscopic images. Computers in Biology and Medicine, 154:106606,
2023.

[17] Zaw Htet Aung, Kittinan Srithaworn, and Titipat Achakulvisut. Multi-
task learning via pseudo-label generation and ensemble prediction for
parasitic egg cell detection: Ieee icip challenge 2022. In 2022 IEEE
International Conference on Image Processing (ICIP), pages 4273–
4277. IEEE, 2022.

[18] Lin Yi, Yajie Lei, Zhichen Fan, Yingting Zhou, Dan Chen, and Ran
Liu. Automatic detection of cervical cells using dense-cascade r-cnn. In
Pattern Recognition and Computer Vision: Third Chinese Conference,
PRCV 2020, Nanjing, China, October 16–18, 2020, Proceedings, Part
II 3, pages 602–613. Springer, 2020.

[19] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T.
Freeman. Labelme: A database and web-based tool for image annotation.
International Journal of Computer Vision, 77(1–3):157–173, 2007.

[20] Thanadon Samernate, Htut Htut Htoo, Joseph Sugie, Warinthorn
Chavasiri, Joe Pogliano, Vorrapon Chaikeeratisak, and Poochit Nonejuie.
High-resolution bacterial cytological profiling reveals intrapopulation
morphological variations upon antibiotic exposure. Antimicrobial Agents
and Chemotherapy, 67(2), 2023.

[21] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-
Hsuan Yang, and Philip Torr. Res2net: A new multi-scale backbone
architecture. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(2):652–662, 2021.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[23] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin,
Lichan Hong, and Ed Chi. Dcn v2: Improved deep amp; cross
network and practical lessons for web-scale learning to rank systems.
Proceedings of the Web Conference 2021, 2021.

[24] Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen, Mengchen Liu,
Lu Yuan, and Lei Zhang. Dynamic head: Unifying object detection
heads with attentions. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[25] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggre-
gation network for instance segmentation. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018.

[26] Jiaqi Wang, Wenwei Zhang, Yuhang Cao, Kai Chen, Jiangmiao Pang,
Tao Gong, Jianping Shi, Chen Change Loy, and Dahua Lin. Side-
aware boundary localization for more precise object detection. Computer
Vision – ECCV 2020, page 403–419, 2020.

[27] Joseph Redmon. Darknet: Open source neural networks in c. http:
//pjreddie.com/darknet/, 2013–2016.

[28] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xi-
aoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, et al.
Mmdetection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019.

[29] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollar.
Panoptic feature pyramid networks. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[30] Htut Htut Htoo, Lauren Brumage, Vorrapon Chaikeeratisak, Hannah
Tsunemoto, Joseph Sugie, Chanwit Tribuddharat, Joe Pogliano, and
Poochit Nonejuie. Bacterial cytological profiling as a tool to study
mechanisms of action of antibiotics that are active against acinetobacter
baumannii. Antimicrobial Agents and Chemotherapy, 63(4), 2019.

[31] Vighnesh Birodkar, Zhichao Lu, Siyang Li, Vivek Rathod, and Jonathan
Huang. The surprising impact of mask-head architecture on novel class
segmentation. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

[32] Ray. Color, shape and texture: Feature extraction using opencv, Jan
2023.

[33] Chuanyun Xu, Yu Zheng, Yang Zhang, Gang Li, and Ying Wang. A
method for detecting objects in dense scenes. Open Computer Science,
12(1):75–82, 2022.

[34] Tingxi Wen, Binbin Tong, Yu Liu, Ting Pan, Yu Du, Yuping Chen, and
Shanshan Zhang. Review of research on the instance segmentation of
cell images. Computer methods and programs in biomedicine, page
107211, 2022.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Introduction
	MATERIAL AND METHODS
	Datasets
	Model development
	Model evaluation
	Bacteria Feature Extraction

	RESULTS
	Compare the detection performance between models and CellProfiler
	Downstream antibiotic classification using bacteria morphological features

	ERROR ANALYSIS
	DISCUSSION
	References

